Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Ther Adv Musculoskelet Dis ; 14: 1759720X221116405, 2022.
Article in English | MEDLINE | ID: covidwho-2009254

ABSTRACT

Interleukin (IL)-6 and IL-1 blockade showed beneficial results in patients with severe COVID-19 pneumonia and evidence of cytokine release at the early disease stage. Here, we report outcomes of open-label therapy with a combination of blocking IL-6 with tocilizumab 8 mg/kg up to 800 mg and IL-1 receptor antagonist anakinra 100-300 mg over 3-5 days. Thirty-one adult patients with severe COVID-19 pneumonia and signs of cytokine release, mean age 54 (30-79) years, 5 female, 26 male, and mean symptom duration 6 (3-10) days were treated. Patients with more than 10 days of symptoms, evidence of bacterial infection/elevated procalcitonin and other severe lung diseases were excluded. Computed tomography (CT) scans of the lung were performed initially and after 1 month; inflammatory activity was assessed on a scale 0-25. Twenty-five patients survived without intubation and mechanical lung ventilation, two patients died. C-reactive protein decreased in 19/31 patients to normal ranges. The mean activity CT score decreased from 14 (8-20) to 6 (0-16, n = 16). In conclusion, most of our patients recovered fast and sustained, indicating that early interruption of cytokine release might be very effective in preventing patients from mechanical ventilation, death, and long-term damage.

2.
Clin Imaging ; 76: 1-5, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1064959

ABSTRACT

OBJECTIVE: This study aimed to improve the accuracy of CT for detection of COVID-19-associated pneumonia and to identify patient subgroups who might benefit most from CT imaging. METHODS: A total of 269 patients who underwent CT for suspected COVID-19 were included in this retrospective analysis. COVID-19 was confirmed by reverse-transcription-polymerase-chain-reaction. Basic demographics (age and sex) and initial vital parameters (O2-saturation, respiratory rate, and body temperature) were recorded. Generalized mixed models were used to calculate the accuracy of vital parameters for detection of COVID-19 and to evaluate the diagnostic accuracy of CT. A clinical score based on vital parameters, age, and sex was established to estimate the pretest probability of COVID-19 and used to define low, intermediate, and high risk groups. A p-value of <0.05 was considered statistically significant. RESULTS: The sole use of vital parameters for the prediction of COVID-19 was inferior to CT. After correction for confounders, such as age and sex, CT showed a sensitivity of 0.86, specificity of 0.78, and positive predictive value of 0.36. In the subgroup analysis based on pretest probability, positive predictive value and sensitivity increased to 0.53 and 0.89 in the high-risk group, while specificity was reduced to 0.68. In the low-risk group, sensitivity and positive predictive value decreased to 0.76 and 0.33 with a specificity of 0.83. The negative predictive value remained high (0.94 and 0.97) in both groups. CONCLUSIONS: The accuracy of CT for the detection of COVID-19 might be increased by selecting patients with a high-pretest probability of COVID-19.


Subject(s)
COVID-19 , Hospitals , Humans , Radiography, Thoracic , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed
3.
Pol J Radiol ; 85: e600-e606, 2020.
Article in English | MEDLINE | ID: covidwho-934575

ABSTRACT

PURPOSE: Emphysema and chronic obstructive lung disease were previously identified as major risk factors for severe disease progression in COVID-19. Computed tomography (CT)-based lung-density analysis offers a fast, reliable, and quantitative assessment of lung density. Therefore, we aimed to assess the benefit of CT-based lung density measurements to predict possible severe disease progression in COVID-19. MATERIAL AND METHODS: Thirty COVID-19-positive patients were included in this retrospective study. Lung density was quantified based on routinely acquired chest CTs. Presence of COVID-19 was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Wilcoxon test was used to compare two groups of patients. A multivariate regression analysis, adjusted for age and sex, was employed to model the relative increase of risk for severe disease, depending on the measured densities. RESULTS: Intensive care unit (ICU) patients or patients requiring mechanical ventilation showed a lower proportion of medium- and low-density lung volume compared to patients on the normal ward, but a significantly larger volume of high-density lung volume (12.26 dl IQR 4.65 dl vs. 7.51 dl vs. IQR 5.39 dl, p = 0.039). In multivariate regression analysis, high-density lung volume was identified as a significant predictor of severe disease. CONCLUSIONS: The amount of high-density lung tissue showed a significant association with severe COVID-19, with odds ratios of 1.42 (95% CI: 1.09-2.00) and 1.37 (95% CI: 1.03-2.11) for requiring intensive care and mechanical ventilation, respectively. Acknowledging our small sample size as an important limitation; our study might thus suggest that high-density lung tissue could serve as a possible predictor of severe COVID-19.

4.
Sci Rep ; 10(1): 13590, 2020 08 12.
Article in English | MEDLINE | ID: covidwho-713031

ABSTRACT

Chest radiographs are among the most frequently acquired images in radiology and are often the subject of computer vision research. However, most of the models used to classify chest radiographs are derived from openly available deep neural networks, trained on large image datasets. These datasets differ from chest radiographs in that they are mostly color images and have substantially more labels. Therefore, very deep convolutional neural networks (CNN) designed for ImageNet and often representing more complex relationships, might not be required for the comparably simpler task of classifying medical image data. Sixteen different architectures of CNN were compared regarding the classification performance on two openly available datasets, the CheXpert and COVID-19 Image Data Collection. Areas under the receiver operating characteristics curves (AUROC) between 0.83 and 0.89 could be achieved on the CheXpert dataset. On the COVID-19 Image Data Collection, all models showed an excellent ability to detect COVID-19 and non-COVID pneumonia with AUROC values between 0.983 and 0.998. It could be observed, that more shallow networks may achieve results comparable to their deeper and more complex counterparts with shorter training times, enabling classification performances on medical image data close to the state-of-the-art methods even when using limited hardware.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Deep Learning , Diagnosis, Computer-Assisted/methods , Neural Networks, Computer , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/classification , Thorax/diagnostic imaging , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , ROC Curve , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL